+7 (495) 540-61-01
Добавки для сухих строительных смесей
+7 (495) 540-61-21
Задать вопрос

МОДИФИЦИРУЮЩИЕ ДОБАВКИ ДЛЯ ССС НА ОСНОВЕ ГИПСОВЫХ ВЯЖУЩИХ

 

Василик П.Г., Голубев И.В.

Статья опубликована в журнале "Строительные материалы" №9 2002 г.

Хорошо известно, что цементное вяжущее, обладая высокой прочностью на сжатие, имеет сравнительно низ-кую прочность на растяжение и на изгиб. Для исправления этого недостатка используется много различных способов, одним из которых является армирование цементного камня различными волокнистыми материалами, как органического, так и неорганического происхождения.
С давних пор в строительных материалах применяли асбестовое и древесное волокно. В прошлом веке распро-странение получили стеклянные, стальные, целлюлозные, полиэтиленовые, полипропиленовые, полиамидные, полиакриловые (ПАН), полиэфирные, углеродные и арамидные (кевларовые) волокна. Все эти типы отличаются не только своими физико-механическими свойствами, стойкостью к воздействию на них агрессивных сред, температур, свето- и атмосфероустойчивостью, но и, что немаловажно, ценой и экологической безопасностью.
Цели армирования сухих строительных смесей волокнами (ССС) можно сформулировать следующим образом:

 

 


Эффективность волокон в композициях возрастает с увеличением их длины. Существует понятие критической длины волокна Lкр, до которой напряжение, воспринимаемое собственно волокном в композиции, возрастает и при L = Lкр становится равным прочности волокна. При разрушении композиции, наполненной волокном с L < Lкр, наблюдается выдёргивание коротких волокон из матрицы, т.е. композиция разрушается на границе волокно / цементный (или гипсовый) камень (рис.1). Волокна с L > Lкр сами разрушаются и полностью реализуют всю прочность. Поэтому композиции, армированные волокном с L > Lкр, намного прочнее, чем волокна с Lкр. Чем меньше значение Lкр волокна, тем эффективнее волокно упрочняет матрицу. Теоретически показано, что при L ? 10Lкр волокно в композиции восприни-мает на себя до 90% внешней нагрузки, на практике же это значение возрастает примерно до 100 Lкр. Увеличение длины волокна приводит к упрочнению композиции, однако одновременно с этим увеличивается вязкость раствора, ухудшается перерабатываемость, технологичность, затрудняется процесс ввода в сухую смесь.
Существует ещё один немаловажный фактор, о котором не следует забывать, когда ведётся речь о полимерном волокне - относительное удлинение волокна при разрыве. Как известно, в определённых условиях стеклообразные полимеры могут выдерживать без разрушения значительные деформации (до 800% у ПЭ). Если величина удлинения при разрыве слишком велика, то мы можем наблюдать разрушение цементного (гипсового) камня без разрушения волокон (рис.2). Это говорит о том, что волокно в такой системе действует максимально эффективно.
Для каждого вида волокон и для каждой композиции Lкр индивидуальна. Существуют оценочные формулы, позволяющие определить Lкр, одна из них имеет следующий вид:

Lкр = 0,5 уf dср / фм
Где:
Lкр - критическая длина волокна
уf – усреднённая прочность волокна
dср - средний диаметр волокна
фм – адгезионная прочность на границе волокно / матрица

Расчеты показывают, что критическая длина волокна (в зависимости от его природы и природы матрицы) обычно находится в диапазоне от 50 мкм до 1000 мкм, так, например, для стеклянных волокон с dср ? 10 мкм в эпоксидных полах Lкр составляет порядка 150 мкм.
Как видно из уравнения, наиболее простым решением проблемы эффективности волокна является увеличение адгезионной прочности на границе волокно / матрица фм. Одним из способов повышения этого показателя для цементных и гипсовых систем является использование редиспергируемых сополимерных порошков Neolith® , которые образуют полимерные пленки внутри композиционного материала и увеличивают таким образом адгезию как к внешней основе, так и на границе волокно / матрица. При этом значительно увеличиваются такие показатели строительного материала, как водостойкость, морозостойкость, атмосферостойкость и т.д. В совокупности с редиспергируемыми порошками полимерные волокна прекрасно себя проявляют и в системах скреплённой теплоизоляции, и в шпатлёвках и штукатурках, и в системах для устройства полов.
Для увеличения эффективности (для снижения Lкр) поверхность некоторых волокон, например, полиакриловых волокон Ricem® , подвергают специальной обработке. В результате такой обработки поверхность становится рифлёной с выемкой вдоль волокна (рис.3), что оптимизирует взаимодействие с вяжущим. Но, несмотря на это, ввиду высокой разрывной прочности полиакрилового волокна (до 1 ГПа) по сравнению с цементным камнем (около 0.0037 ГПа), использование данного вида волокна длиной менее 0,5 мм неэффективно.

 

 

Рис. 3. Полиакрилонитриловое волокно Ricem®


Основными проблемами использования волокон являются их заметное влияние на вязкость и технологичность строительного раствора, а также сложности при введении в состав ССС. Короткие и средние целлюлозные волокна длиной до 500 мкм достаточно легко перемешиваются в смесителях любого типа. Длинные волокна (более 500 мкм) рекомендуется смешивать в смесителях с высокими скоростями смешения и деагломераторами, при этом достигается равномерное распределение волокон в ССС.
Производителями ССС часто практикуется предварительное смешивание некоторых компонентов сухих смесей. В первую очередь это касается так называемых премиксов песка с армирующими волокнами. Применяя, таким образом, двухстадийное смешение можно добиться достаточно равномерного перемешивания даже самых длинных волокон.
Для снижения вязкости и улучшения технологичности строительных растворов, армированных волокнами, можно использовать высокоэффективные гиперпластификаторы Melflux® , которые отличаются также противоусадочными свойствами по отношению к цементу. Применение этих продуктов особенно актуально при создании рецептур самовыравнивающихся наливных полов.
Ввиду чрезвычайно широкого ассортимента предлагаемых волокон, остаётся открытым вопрос о поиске наиболее эффективных решений. Основные характеристики волокон различных типов приведены в таблице №1.

Таблица №1. Характеристики волокон различных типов.

Тип волокнаСтеклоПАН Ricem®Целлюлоза Technocel®Полиамид(Нейлон-6)Полипро-пилен
Плотность, г/см3 2.55 1.18 1.1-1.3 1.1-1.3 0.91
Диаметр, мкм 10-50 6-20 Ок. 25 30-100 15-30
Е-модуль, ГПа 88-700 15 1.8-4.3 0.6-5.5 0.6-5.0
Прочность на разрыв, ГПа 2.0-3.5 0.6-1.0 0.02-0.50 0.3-0.7 0.2-0.5
Удлинение при разрыве, % 4.8-5.0 5-10 0.8-4.0 5-70 15-50



При выборе армирующего компонента следует обратить внимание на следующие моменты:

Таким образом, при создании материалов, где требуется волокно с малым размером, лучше использовать целлюлозные волокна Technocel® , так как высокопрочное волокно не сумеет полностью проявить свои механические характеристики. При получении высокопрочных материалов, таких, например, как промышленные полы, лучше использовать высокомодульные полиакриловые волокна Ricem® . Эти волокна прекрасно зарекомендовали себя не только при производстве ССС, но и при производстве битумных дорожных покрытий, при строительстве трасс “Формулы-1” и т.д.

СПИСОК ЛИТЕРАТУРЫ
[1] “Принципы создания полимерных композиционных материалов”. Ал.Ал. Берлин, С.А. Вольфсон, В.Г. Ошмян, Москва, “Химия”, 1990г.
[2] Сборник аналитических и проблемных задач по курсу “Принципы создания полимерных композиционных материалов”. Л.Б. Кандырин, И.Д. Симонов-Емельянов, Москва, 1999г.
[3] “Основы технологии переработки пластмасс” под редакцией В.Н.Кулезнёва, В.К.Гусева, Москва, “Химия”, 1995г.
[4] “От гарцовки – к модифицированным сухим смесям”. П.И. Мешков, В.А. Мокин. “Строительные материалы”, №3, 1999г.
[5] “Армированные волокнами вяжущие композиционные материалы: вклад полиамидных волокон”. Доктор М. Сари, Дж. Лекселент. 3-я Международная научно-техническая конференция “Современные технологии сухих смесей в строительстве”. Сборник докладов. Санкт-Петербург, 2001г.